分类 technique 下的文章

torch.cuda.is_available() #cuda是否可用
import torch
import torch.nn as nn

class MyModule(nn.Module):
    def __init__(self, <args>):
        super().__init__()
        #初始化
        self.fc = nn.Linear(in, out) 
        self.fc.weight.data.uniform_(-0.5, 0.5)
        self.fc.bias.data.zero_()

    def forward(self, <args>):
        return self.fc()


device = torch.device("cuda")

model = MyModule(<args>).to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=4.0)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.9)

def train(nn, iterator, optimizer, criteon):
    nn.train()
    for i, batch in enumerate(iterator):
        optimizer.zero_grad()
        pred = nn(batch.text)
        loss = criteon(pred, batch.label)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

def eval(nn, iterator, criteon):
    rnn.eval()
    with torch.no_grad():
        for batch in iterator:
            pred = nn(batch.text)
            loss = criteon(pred, batch.label)


变换

torch.triu(tensor) 将 tensor 变为右上三角
tensor.masked_fill(mask, value) 将 mask 为 True 位置用 value 填充
下标索引x::y:从x开始间隔y取一个

操作

model.parameters() : 返回模型所有参数的generator
tensor.numel() :返回模型参数数量

optim

torch.optim.SGD(model.parameters(), lr = 0.01, momentum)

layer

nn.Embedding(vocab_size, embedding_dim)
单词到word vector
vocab_size : 词汇量大小
输入:1维index索引
输出:embedding_dim维word vector

nn.LSTM(embedding_dim, hidden_dim, num_layers = 2)
LSTM层
dropout:默认0
bidirectional:默认False

nn.Linear(in_size, out_size)
全连接层

torch.cat([hidden[-2], hidden[-1]], )

并行

if local_rank != 0:
    torch.distributed.barrier()
# 只有主进程执行
if local_rank == 0:
    torch.distributed.barrier()
#所有进程执行

model = torch.nn.DataParallel(model) #多GPU数据并行
torch.cuda.device_count() #GPU数量
model = torch.nn.DataParallel(model) #多GPU数据并行

#tcp/ip five layer model
tcp/ip stack

network layer : communicate through routers
通过router连接:internetwork -> Internet
协议: IP -> internet protocol

data link layer : across a single link
network layer : across a collection of networks
transport layer : sort out which client and sever programs are supposed to get that data

hub: physical层设备,少用
switch:data link层设备

router:forward data between independent network
network layer
Border Gateway Protocol(BGP) : router最优路径选择协议

网线接口 : RJ45
link light : 正确连接
activity light : 数据正确传输

data link层

MAC地址:48位 前24位表示生产厂商

unicast : 一对一传输 least significant bit为0
mulcast : least significant bit为1
broadcast : 发送到LAN中每个设备 -> board cast address : FF:FF:FF:FF:FF:FF

Ethernet frame

Preamble: 8byte
前7byte : 交替01
最后byte : SFD(start frame delimiter)

destination address : 目标MAC地址
source address : 来源MAC地址
ether-type : 16bit 描述协议
VLAN header : 表示frame本身为VLAN frame
VLAN(virtual LAN):单个物理设备有多个虚拟LAN
payload :数据
FCS : frame check sequence cyclical redudancy check(CRC)

network层

DHCP(dynamic host configuration protocol):分配ip地址

ip datagram

version : 协议版本
header length : 20bytes for ipv4
service type: 8bits quality of service (QoS)
identification: 相同message该字段相同
flag field: datagram是否可以fragment
fragment offset: 标识一个datagram的切片
TTL: time to live 被抛弃前最多的router hop次数
protocol: 传输层所使用协议
header checksum: datagram header校验和

ipv4地址:
class A:
开始为0
第一个byte:network ID
后三个byte: host ID
class B:
开始为10
前两个byte:network ID
后两个byte: host ID
class C:
开始为110
前三个byte:network ID
最后一个byte: host ID

ARP : address resolution protocol
寻找一个ip的硬件地址
ARP table: ip地址与MAC地址表

三段non-routable address:
10.0.0.0/8
172.16.0.0/12
192.168.0.0/16
对外部router不可见

transport层

tcp header

sequence number : 当前段的编号
acknowledgement number : 下一段编号

命令

linux : traceroute
win : tracert
打印传输路线

linux : mtr
win :pathping
持续traceroute

linux : netcat
nc -z -v [host] [port] -z: zero input -v: verbose
win : Test-NetConnection

nslookup

看起来挺有趣的书
果然自己还是懂得太少了

ELF(Executable and Linking Format) 可执行可链接格式

od {-t [c/x1/x1z...]} [file] 将文件转为[字符/ 十六进制 / 十六进制后显示字符]格式,默认为8进制

readelf -h [file] 读取elf格式头信息

静态链接库

ar ruv libfoo.a foo.o bar.o #打包静态链接库
ar tv libfoo.a #查看库中内容
cc -o baz.o -lfoo #链接libfoo.a到baz.o

动态链接库

gcc -fPIC -c add.c #生成.o文件,PIC:position independent code
gcc -shared -o libmymath.so subtract.o add.o #生成动态链接库
gcc -o libmymath.so -fPIC -shared subtract.c add.c #将两步命令合为一步
gcc main.c -L. -lmymath 

同时有静态动态链接库时优先链接动态链接库

objdump -d hello.o 反汇编

doxygen -g #生成配置文档
doxygen ./Doxyfile #以配置Doxyfile生成doxygen文档

配置选项:
PROJECT_NAME:工程名称
OUTPUT_DIRECTORY = ./document
:输出文档目录
INPUT:代码目录
RECURSIVE = YES: 是否递归子目录
EXTRACT_ALL = YES
EXTRACT_PRIVATE = YES
EXTRACT_STATIC = YES
FILE_PATTERNS 识别的文件格式